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ABSTRACT

Title of Thesis: Using Text to Improve Classification of Man-Made Objects

Akash Alok Vartak,

M.S. in Computer Science, 2022

Thesis directed by: Dr. Tim Oates,
Professor
Department of Computer Science and
Electrical Engineering

People identify man-made objects by their visual appearance and the text on them

e.g., does a bottle say water or shampoo? We use text as an important visual cue to help

distinguish between similar looking objects. This thesis explores a novel joint model of

visual appearance and textual cues for image classification.

We perform this in three functions - (a) Isolating an object in an input image; (b)

Extracting text from the image; (c) Training a joint vision/text model. We simplify the task

by extracting text separately and presenting it to the model in machine readable format.

Such a joint model has utility in many real world challenges where language is interpreted

through a sensory perception like vision or sound.

The aim of the research is to understand whether visual percepts, when understood in

the context of extracted language, will provide a better classification of image objects than

using only pure vision to perform image classification. In conclusion, we show that joint

classifier models can successfully make use of text present in images to classify objects,

provided that the extracted text from images is of high quality and we have the number of

images proportional to the number of classification classes.

Keywords: Computer Vision, Classification, Deep Learning, NLP, Text Extraction
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Chapter 1

INTRODUCTION

Research in Artificial Intelligence (AI) has been accelerating for the past decade and

a half, with significant work in multi-modal systems. There has been a renewed interest

in one such discipline - image captioning and textual reasoning in the context of images.

This is an important AI sub-system that encompasses Computer Vision (CV) and Natural

Language Processing (NLP). This is because CV and NLP are crucial to the advancement

of AI as they model two of human beings’ most important faculties - vision and language.

Human beings see an object and instantly know what it is, due to their powers of supe-

rior perception and innate ability to understand objects in the context of their surroundings,

which is not the case for machines. Machines often need to understand images without any

context. We hypothesize that text found on objects in the real world will offer great in-

sight into the object itself and improve the accuracy of a classification model. Through this

research we propose a model that can take an image, extract text from that image, reason

about the image in context of the text, and classify that object.

There are a number applications of such an integrated pipleline. It can be used in

online retail marketplaces to immediately classify objects by type and category, for users

and buyers to quickly sort through. It can be used to model visual reasoning systems in

autonomous cars to understand street signs for navigation.
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We have proposed a novel architecture that combines a text extraction tool and a joint-

classifier to create an end-to-end pipleline for image classification in context of the lan-

guage in the image. The joint-classifier is an amalgamation of an image classification

model (a convolutional neural network), and a sequence learning model (a Long Short

Term Memory). We briefly talk about the past research in this area, and then describe in

detail the dataset we compiled and the experiments we formulated and ran. Next, we ex-

plain the experiment results, and interpret the results and their impact on our hypothesis.

Finally, we present our conclusion and provide ideas for future work.



Chapter 2

BACKGROUND AND RELATED WORK

In this chapter we describe the required background and prior work related to our

research.

2.1 Background

2.1.1 Residual Networks

Ever since the advent of convolutional neural networks (CNN), the best results on

non-trivial vision-based tasks are accomplished using ‘deep’ or ‘very deep’ models. This

established the significance of large depth as one of the most important factors in designing

and choosing a CNN of a particular architecture. But with increasing depths came the

problem of ‘vanishing gradients’. This occurs when the weights of each previous layer of a

network receive corrective updates that are proportional to the partial derivative of the error

function of weights in the current layer. This causes each subsequent update’s magnitude

to decrease. In some cases it is so minute that it prevents the model from learning or

converging (Hochreiter 1998).

The vanishing gradient problem was then addressed by using normalized initializa-

tion and intermediate normalization which allowed deep networks to converge with back-

propagation. This brought the problem of ‘degradation’, where by increasing depth net-

3
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works were able to get better accuracy, but this accuracy saturated and after a point started

decreasing or degrading.

In the paper “Deep Residual Learning for Image Recognition”, He et al. proposed

a convolutional neural network model known as the Residual Networks or ‘ResNet’ (He

et al. 2015). It is made of multiple building blocks that are characterized by the equation

F (x) + x as shown in Figure 2.1, where the networks are “feed-forward networks with

shortcut connections” (He et al. 2015). These shortcuts skip one or more layers and are, in

essence, identity mappings whose outputs are added to the outputs of the skipped layer and

fed to the next layer.

Formally, the building blocks are defined as

y = F (x, {Wi}) + x (2.1)

where x and y are input and output vectors of the layers and F (x, {Wi}) is the residual

mapping which has to be learnt. The additive operation is a straight forward element-wise

addition. The shortcut connections introduce no new parameters and are computationally

non-complex. This allowed the authors to compare the residual networks and their plain

network counterparts. It is crucial that dimensions of x and F are equal. If not, then a

linear projection shortcut Ws is required:

y = F (x, {Wi}) +Wsx (2.2)

(He et al. 2015)

The authors were able to show that their networks, with skip connections, had lower

training error than similar networks without skip connections, and can continue to be

trained by the same back-propagation algorithm to get consistently increasing accuracy
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even at higher depths.

FIG. 2.1: Residual learning block (He et al. 2015).

FIG. 2.2: Original table showing the ResNet architectures (He et al. 2015).

2.1.2 ResNet-18

ResNet-18 is a residual network of 18 layers and is inspired from the VGG network

models. It takes as input a 3-channel (RGB) image of size 224x224 and ends with a 1000-

way fully connected layer output.



6

Each convolution layer uses a 3x3 filter, stride of 1, and a fixed feature map dimension

of 64, 128, 256, and 512. Shortcut connections are shown by solid curved lines in Figure 2.3

and are used to bypass the input every 2 convolutions. In a single layer, the height and width

dimensions remain constant. These shortcuts, as defined by Equation 2.1, are used when the

input and output are of the same dimension size. When the required dimension increases,

ResNet either performs a padding with extra zeros to increase the input dimension or uses

a projection shortcut as shown in Equation 2.2.

When there is a change in the feature map size (size is halved), the number of filters

is doubled. He et al. state that this is to preserve the time complexity of each layer. To

achieve this result, the ResNet architecture performs a convolution with a stride of 2 as

shown by the dotted curved lines in Figure 2.3. This is the fist convolution of each layer

instead of the more commonly used max-pooling with a stride of 2.

All original ResNet architectures are shown in Figure 2.2

2.1.3 Long Short Term Memory (LSTM)

Long Short Term Memory (Hochreiter & Schmidhuber 1997) networks are special

neural networks that are designed to learn sequences and are capable of learning long-term

dependencies. LSTM’s core behaviour is structured around remembering and retaining

information for long periods of time. All such sequence learning networks have a chain-

like architecture of repeating modules of the network. In LSTMs, the repeating module is

a single block of 4 interacting layers as shown in Figure 2.4. The blue items are layers and

the yellow items are point-wise operations.

The key of an LSTM’s operation is the cell states - the top horizontal line in Figure

2.4, going from Ct−1 to Ct. The cell state is what holds the information flowing through

the LSTM network, to which information can be added or removed via ‘gates’. Gates

are operations that optionally let information through or ‘forget’ unwanted information. A
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single LSTM cell functions as follows (all symbols and notations correspond to the ones in

Figure 2.4):

• First, the LSTM decides what information it does not need to retain. This decision is

made by the ‘forget gate’. It is characterized by the equation:

ft = σ(Wf .[ht−1, xt] + bf )

ht−1 is the hidden state of the previous cell and is the input to the current cell. xt is

the information that the current cell needs to process.

• The next step is to identify what information needs to be stored in the cell state and

this is done in 2 parts. First the ‘input gate’ decides what to update and then the ‘tanh

layer’ creates a new vector of candidate values C ′t. These will be updated to then be

added to the cell state. This step is characterized by the equations:

it = σ(Wi.[ht−1, xt] + bi)

C ′t = tanh(WC .[ht−1, xt] + bC)

• Next, the cell state needs to be updated from Ct−1 to Ct. This is done via point-wise

multiplication and addition operations as follows:

Ct = ft × Ct−1 + it × C ′t

• Now, the new cell state is available and the LSTM must decide what information to

output. For this, a tanh function is used to push values of the output within -1 and 1

and is then multiplied to the output of the sigmoid gate. This gives us the next cell’s

hidden state:

ot = σ(Wo[ht−1, xt] + bo)

ht = ot × tanh(Ct)
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2.2 Related Work

Research in the field of text based reasoning, in context of objects and images, has

been developing for quite some time. Over the years, many tasks have been proposed to

model various human abilities such as identifying objects in images (Krizhevsky, Sutskever,

& Hinton 2017), describing an object or scene in an image (Lin et al. 2014), learning to

recognize novel objects that are not present in the dataset used to train the model (Hendricks

et al. 2015), the ability to answer questions about an image (Antol et al. 2015) and even

generating imaginary stories about sequence of images (Huang et al. 2016).

One of the main sub-fields that papers and researchers tackle in this domain is that

of VQA - Visual Question Answering. VQA involves a set of images of objects with text

and then answering a question about that text in context of the object or vice versa. A

novel approach to this task was proposed by (Singh et al. 2019). They proposed a model

LoRRA - Look, Read, Reason and Answer - that reads text, reasons about it in the context

of the image and predicts an answer for the question asked. They built their own ‘TextVQA’

dataset comprising of 45336 questions on 28408 images. These questions generally require

reasoning about the text in order to satisfactorily answer questions, and explained that any

VQA model actually needs to:

• Understand what question is being asked about the image and text.

• Find image regions that contain text and convert those regions into text that the pre-

dictor model can understand.

• Try and jointly reason about this text and image with respect to the question.

• Predict whether the image’s text contains an answer to the question or if the answer

needs to be inferred from the joint reasoning.
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This shows the complexity and sheer volume of the sub-tasks that a VQA model needs to

complete. For this, they were the first to propose the use of Optical Character Recognition

(OCR) as a module in a VQA model. However, their model was limited in scope to OCR.

Another field of research is that of Scene Text Recognition (STR). STR refers to the

task of reading text from natural scenes or images of natural world objects. The stimulus

received by text recognition tasks was influenced by the maturity of OCR models. OCR

could easily be applied to cleaned documents and manuscripts to extract the text that the

specific OCR model was programmed and trained on. But even mature OCR methods

failed on STR tasks due to the diverse nature of texts and their varied appearances in the

real world. Baek et al. 2019 studied many such STR models and their corresponding

datasets. They examined inconsistencies in the training and evaluation datasets and resul-

tant performance drops. The datasets they compared ranged from synthetically generated

word sets like MJSynth and SynthText to real-world datasets like Street View Text (SVT)

and IIIT5K-Words. They then proposed a multistage STR model that found image regions

containing text, normalized these regions, and performed feature extraction and text pre-

diction. Their model was a deep learning based text recognition technique that did well on

a myriad range of real world texts.

We go a step beyond all prior work and propose a joint classifier that combines an

image classifier and a text classifier. It jointly learns to associate the text found in images

with the object in the image itself, and then classify the object into a category.
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FIG. 2.3: ResNet-18 model architecture visualized.
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FIG. 2.4: A single repeating block of an LSTM.



Chapter 3

DATASET

This chapter explains how we created our own Amazon Product dataset, using the

publicly available metadata files from the Amazon Review Dataset (Ni, Li, & McAuley

2019).

3.1 Amazon Review Dataset

The Amazon Review Dataset, published by Ni, Li, & McAuley, is made free-to-use

for research purposes. We use the metadata files as our initial source CSVs. These CSVs

provide various features like product category, product description, similar ‘also bought’

and ‘also viewed’ products, brand name, and product identification ‘ASIN’ number.

We use only 6 categories as they provide us with a sufficiently large dataset to work on.

The categories used are - Appliances, Luxury Beauty, Magazine Subscriptions, Software,

Musical Instruments, and Gift Cards. Sample images from the dataset are shown in Figure

3.1 and Figure 3.2. The original Amazon Review Dataset does not contain any images and

has only the aforementioned product metadata. The images were scraped as explained in

the following sections.

12
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3.2 Our Amazon Product Dataset

3.2.1 Product Images Scraping

Each category’s metadata CSV has multiple products, and each product line provides

the product ASIN which can be used to uniquely identify it. We wrote a Python Selenium-

based image scraper that uses the ASIN, and generates and opens an Amazon marketplace

URL. The scraper then clicks each thumbnail image of the product and downloads the

images that get displayed on an Amazon product page.

Most Amazon products have multiple images per product, but some products have

no images uploaded on the products page. We ignore such products as they cannot be

used in our experiments. As each image is being scraped, a new JSON file is created that

contains the original metadata filename, product’s ASIN, category and file path of the saved

image. This automated image scraping process is repeated for all product listings for the

6 aforementioned categories. Each category has its own independent individual JSON of

saved images with a filename format of ‘scraped meta 〈category〉.json’. Examination of

the scraped images revealed that there is an imbalance in the dataset - each class has a

different number of images.

3.2.2 Text extraction via Tesseract OCR

For text extraction, we used Tesseract as the OCR. The JSONs created during image

scraping are the input to this phase.

Tesseract, for text extraction, can be configured on a wide variety of parameters like

image resizing percentage, Mean Blurring aperture size, Adaptive vs Binary thresholding

and Mean vs Gaussian thresholding methods, among others. After experimenting with a

host of various combinations, we settled on the following combination: images would be

resized to 190%, median blurring would be employed with an aperture size of 3 (must be
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an odd number) and binary thresholding (Otsu method).

In an automated python script, for each image a thread is spawned that does the fol-

lowing tasks in-order: open image and convert to grayscale, resize image to 190%, perform

binary thresholding on resized image, apply median blurring, and save this as a temporary

image. This saved image is then passed as input to Tesseract and it extracts text which is

saved in a CSV that contains the original image path, the extracted text, and the product

category. The extracted text is converted to lowercase for the sake of uniformity. Similar to

the JSONs, each category has its individual CSVs of extracted texts with a filename format

of ‘text extracted meta 〈category〉.csv’.

3.2.3 Final Dataset Consolidation

Our final dataset consists of 2 components - a single CSV containing all the extracted

text, and the scraped images. The single final dataset CSV is created by simply concatenat-

ing all individual CSVs into one. Both these dataset components will be used as inputs to

both the two baseline and combined classifiers in the experiments, as explained in the next

chapter.



15

FIG. 3.1: Sample dataset images for each category along with possible text for OCR to ex-
tract. Categories starting horizontally from top left: Appliances, Luxury Beauty, Magazine
Subscriptions, Software, Musical Instruments, and Gift Cards. (Ni, Li, & McAuley 2019).
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FIG. 3.2: Sample dataset images for each category that contain no readable text. Categories
starting horizontally from top left: Appliances, Luxury Beauty, Musical Instruments, Gift
Cards and Software. ‘Magazine Subscriptions’ category does not have any images without
text (Ni, Li, & McAuley 2019).



Chapter 4

ARCHITECTURE, EXPERIMENTS AND RESULTS

4.1 Architecture

The final goal of this project is to create a complete integrated pipeline consisting of:

(1) automated text extraction by an OCR tool and (2) a classification model. The classifi-

cation model would be an ensemble of two parts in sequence - a ResNet18 and an LSTM.

The model would take object images that contain text as input and classify these objects

in 1 of the 6 categories - Appliances, Luxury Beauty, Magazine Subscriptions, Software,

Musical Instruments, and Gift Cards. This pipeline is shown in Figure 4.1. Yellow items

denote components of the pipeline, blue items are inputs to the components and the green

item denotes the predicted category of the image. We hypothesize that the textual cues in

the images would aid in classification of the object (in the image), and that the extracted

text would be especially useful if it were reasonably good or near perfect, e.g., as a human

reader would extract it.

Before we can build a combined classifier we create two baseline classifiers. Baseline-

1 is an image-only classifier that performs classification purely on image inputs and is a

ResNet-18 convolutional neural network. Baseline-2 is a text-only classifier that performs

classification purely on the OCR extracted text. These baseline classifiers are intended to

give us an idea of how the individual models fare on classifying the object images and how

17
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they contribute in the combined classification model.

First, the dataset was randomized to prevent any two runs of the experiment from

using the same train, validation and test example sequences. It was then partitioned to the

respective sets. This randomization was done to help minimize the chances of having a

biased dataset and increase the probability of having a representative dataset for training.

For each experiment, the dataset was divided in ratios of 0.7:0.15:0.15 to separate into train,

validation, and test datasets. Due to the unique nature of our model that required it to have

two inputs - image and text - we implemented our custom collate function to create input

batches for the PyTorch based model.

In each run of any classification model, if the model used image inputs, the images

were resized to ResNet’s input size of 224x224 and center cropped to get a centered,

squared image. They were then normalized around the mean and standard deviation of

ImageNet dataset values - mean=[0.485, 0.456, 0.406] and std=[0.229, 0.224, 0.225]. Ima-

geNet values were used because the images in our dataset are photos of objects in “natural

scenes”.

For all textual data, we used word embeddings as input to the LSTM. The Fast-

Text’s Wiki News ’wiki-news-300d-1M‘ word embeddings corpus was used (Mikolov et

al. 2018).

FIG. 4.1: The final architecture pipeline.
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4.2 Experiments

For every experiment, we ran the specific experiment’s dataset through each of the two

baseline classifiers as well as the combined classifier. Below, we have explained the dataset

or sub-dataset used for each experiment, experiment parameters, classification results and

our interpretation as to how they affect our hypothesis. Note: in every experiment, the

model considers only those image input examples that have some extracted text and ignores

those images that have no extracted text. Only about 25% of the images had some text

extracted from them.

Our image based classification model uses ResNet-18 as the base pretrained network,

and replaces its fully-connected layers by our hidden fully-connected layer. Our text based

classification model is an LSTM with an input word embedding with a dimension of 300

(number of LSTM’s expected features). It is a stacked LSTM that employs 2 recurrent

layers.

We used the following standard parameters through each experiment:

• training batch size of 64

• validation and test batch size of 1000

• learning rate of 0.001

• 25 epochs for train, validation and test

• word embedding dimension of 300

4.2.1 Unbalanced Classification

We used our complete dataset for this experiment. Since each classification model

considers only images with some extracted text, the dataset for this experiment was of
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24218 images, which was then partitioned into 16952, 3632, 3634 images respectively in

train, validation, and test sets.

The experiment’s goal was just to see how each classifier would fare on our dataset,

and understand whether we needed to expand the dataset or rerun text extraction using a

better OCR, and further to see how the dataset’s unbalanced class distribution would affect

the classifiers.

Results for this experiment are shown in Table 4.2a and graphically in Graph 4.2b.

At first glance, it seems as if the text-only classifier is independently performing nearly as

good as the independent image-only classifier. But, on closer examination of the text-only

classifier’s confusion matrix (shown in Table 4.3a), we see that it achieves a 70%+ accuracy

since it predicts most instances to be the frequently occurring class - ’Luxury Beauty’. This

prompted an examination of the image-only classifier’s confusion matrix (shown in Table

4.3b), and it too revealed the same - it predicts most instances to be the frequently occurring

class.

Due to this nature of each baseline model, the combined classifier also takes a sim-

ilar approach and this behaviour does not provide any insight about the usefulness of the

extracted text.

Our dataset is inherently unbalanced, and since we consider only images with some

extracted text, this imbalance is further accentuated. These results, coupled with the

dataset’s imbalance, make it clear that the classifiers are behaving as a dominant class

predictor. This neither helps to prove nor disprove our original hypothesis, since it does not

provide any evidence as to how textual data is affecting the classification.

4.2.2 Unbalanced Classification with Normalized Weight Balancing

As observed in the earlier experiment, classification on unbalanced data leads the

classifier to predict the dominant class. To fight this imbalance, we decided to use the
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same dataset, but this time we introduced weight normalization. We counted the number of

images per class and gave each class a weight that is inversely proportional to the number

of images per class - higher weight to the least frequent class and least weight to the most

frequent class. This was done as shown by Algorithm 1.

Algorithm 1 An algorithm to calculate class weights.
Require: ‘label sample count’ is a dictionary that contains count of number of images per

class.
Ensure: label weights will contain final normalized class weights.
counts← list[label sample count.values()]
label weights temp← [] . Calculate class weights.
for c in counts do

if c 6= 0 then
label weights temp.append()← sum(counts)

c

else
label weights temp.append()← 0

end if
end for
label weights← [] . Normalize class weights.
for lx in label weights temp do

label weights.append()← (lw−min(label weights temp)
(max(label weights temp)−min(label weights temp))

end for

Following this, the dataset was split in the same way as before - partitioned into 16952,

3632, 3634 images each in train, validation, and test sets respectively.

This experiment was specifically designed to see if classification improved when these

weights were assigned to classes. The class weights come into play when we calculate a

model’s prediction loss in training mode. Results for this experiment are shown in Table

4.4a and graphically in Graph 4.4b.

Results show that the image-only classifier continues to predicts classes with a sat-

isfactory accuracy. Examination of the image-only model’s confusion matrix (Figure 4.6)

shows that it benefited from the addition of class weights and was no longer behaving as a
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dominant class predictor.

However, our text-only classifier accuracy drops significantly even after using class

weights. This could be attributed to the poor quality of input data, which in our case is

the extracted text. This was proven by an examination of the extracted text and led to the

following finding. Either:

• Text was not extracted in its entirety - some words from the text were not extracted.

• In other cases, the extracted text had words no longer than 2-3 letters each and/or

were not valid English words.

An example image of this issue is shown in Figure 4.5. The OCR’s extracted text for this

image was “McGraw-Hill LearnSmart® gets you BAe the grade you’ve atways wanted. Se

leerinan tne oo nen a an SAS rete Ne RA POUT OR Cire One Bert DerES poten a HV gu

Wel were mate (er tunpet”. This clearly shows that only a small percentage of the text from

the complete extraction could be useful to a human classifier. This example has all of the

above issues - some text is not extracted and the part that is extracted is either incorrect or

not understandable. Even in the case of clearly readable text in the image, the extraction

was poor - the first sentence of the extraction should have been close to: ‘McGraw-Hill

LearnSmart gets you the grade you’ve always wanted’. Consequently, it can be said that

the text-only classifier was unable to get any information from the available language.

Our combined classifier’s accuracy also suffered due to this inability to generalize on

the poor quality textual data. As seen in the Table 4.4a, the combined classifier’s accuracy

averages at just 63%. Thus, our hypothesis, again, could not be proven or disproven. We

tried to tweak Tesseract OCR to improve the quality of the extraction, but this did not give

satisfactory extraction results. We then moved on to the next experiment where we try to

mitigate these text issues.
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4.2.3 Balanced Classification

This section describes the experiments conducted on balanced datasets wherein each

class had the same number of images. Similar to earlier experiments, every experiment’s

dataset was first randomized and then split in train, validation and test sets.

24-image Subset Experiment

In the earlier experiment, we applied normalized class weights to diminish the effect of

the dataset’s imbalance and to improve the accuracy of our classification models. Instead,

we saw that though the image classifier benefited from these class weights, the text-only

and subsequently the combined classifier did not. This was due to low quality text being

extracted by the OCR.

The 24-image subset experiment was designed to solely test whether even small

amounts of perfect/near perfect text allowed the text-only classifier to aid in object clas-

sification. To first improve the text quality we decided to manually hand-extract text from

24 images from each category. This would constitute our dataset and this set number of

images from each category also removes any dataset imbalance. The resultant dataset was

made of 192 images and was then split into 134, 28 and 30 images respectively in train,

validation and test sets.

The models’ accuracy results for this experiment are shown as in Table 4.7a and graph-

ically in Graph 4.7b.

The graph shows that the accuracies of all 3 models dropped to below 20%. This is

due to an extremely small dataset size of just 192 images in total. This accuracy drop can

be understood intuitively - since the models did not have enough data to train on it led to

poor generalization. Additionally, the accuracy drop cannot be attributed to over-fitting due

to the small dataset size. The evidence to prove this is shown in Figures 4.8, 4.9, 4.10. They

show that neither train, validation nor test witnessed any accuracy drops till the end of the
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experiment.

Having said that, it can be seen that improved text quality helps the text-only classifier

fare better than before. It can be said that even small amounts of good text help the text-

only classifier improve accuracy. Consequently, the combined classifier also benefited from

good extracted text and had an accuracy that was not too far from that of the two baseline

classifiers.

Due to human limitations we could extract text for only 24 images of each category

but we believe that if this is done on a larger scale (at least 1000 images per category) either

by hand or by an improved OCR tool, we shall see the hypothesis holding - ‘good’ textual

language will aid in classification of objects.

75-image Subset Experiment The previous experiment showed that textual cues do

certainly have the potential to aid in classification of objects, but in that experiment we had

a large number of classes and not enough training samples in proportion. We also saw that

even a small amount of good textual data is useful for the classifier. We wanted to build on

both these notions and reduce the number of classes and increase the number of samples

per class. We devised the 75-image subset experiment to test whether, given a subset of

classes and a proportionate number of training samples with the same kind of near-perfect

extracted text, the classifier can achieve better accuracy. This would help prove that text

can improve classification accuracy.

For this, we decided to use two classes - Luxury Beauty and Magazine Subscriptions

- and hand-extracted text from 75 random images of each category. Our dataset was of

150 images in total which was then split into 105, 22, and 23 images respectively in train,

validation, and test sets.

The accuracy results of this experiment are shown in Table 4.11a and Graph 4.11b.

We can see that model accuracies have risen considerably due to number of images



25

being proportional to the number of classes. Additionally, the text-only classifier has an

accuracy that is equivalent to that of the image-only classifier. However, the accuracy was

still in the range of 50-70%. This warranted further examination of the images and text.

We saw that images within a category are not one type of image. For example, in

‘Luxury Beauty’, images are not standardized as always a bottle or a tube, but rather they

are a variety of images and with a dataset of size 150, the image-only classifier has a tough

time trying to learn from the limited training set. The problem for the text-only classifier is

that the text is not unique enough to classify between categories. Both categories - ‘Lux-

ury Beauty’ and ‘Magazine Subscriptions’ had common words like ‘health’, ‘beauty’ and

‘easy’. Having unique words for clean or even reasonably good classification is necessary

since word-level embeddings were used.

Thus, it is clear that perfect/nearly perfect textual data helps the text-only classifier

and in-turn helps the combined classifier. But, this textual data needs to be unique enough

to have category-specific feature markers that point to which category that text belongs to.

These issues affected the combined classifier too but the quality of the extracted text

coupled with a pretrained ResNet, we achieved an accuracy higher than both the baseline

classifiers.

This helps nudge us towards thinking that our hypothesis is true - that ‘given a subset

of classes and enough training samples in proportion with the same kind of near-perfect

extracted text’ the baseline classifiers and combined classifier can give good classification

results. This shows that when high quality text extracted from images is combined with the

image itself, it does have the potential to improve classification accuracy.

The rise of accuracies of each model, relative to the previous experiment, can be

explained by another factor. This experiment performs classification by using 2 categories

instead of all 6 and focuses on increasing the amount of perfect text available per image

per category. From the perspective of a binary classification problem, the dataset size is a
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decently large 75 images per category compared to the previous experiment’s 24 images.

Consequently, the joint classifier had an easier time learning and generalizing on binary

classes rather then multi-class.

Thus, the conclusion can be re-framed to say that when high quality text extracted

from images is combined with the image itself, and when the quantity of high quality

extracted text is proportional to images per category, it does have the potential to improve

classification accuracy.
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Classifier Name Dataset Size
Accuracy (%)

Train Validation Test
Image Only

24218
75 75 74

Text Only 74 74 74
Combined 70 70 70

(a) Table of classification accuracies.

(b) Plot of classification accuracies.

FIG. 4.2: Classification accuracy of each model for unbalanced classification experiment.
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Luxury
Beauty

2695 0 0 0 0 0

Magazine
Subscrip-
tions

321 0 0 0 0 0

Software 41 0 0 0 0 0
Musical
Instru-
ments

481 0 0 0 0 0

Gift
Cards

17 0 0 0 0 0

Appliances 79 0 0 0 0 0
Luxury
Beauty

Magazine
Subscrip-
tions

Software Musical
Instru-
ments

Gift
Cards

Appliances

(a) Confusion matrix for the Text-only classifier.

Luxury
Beauty

2694 0 0 1 0 0

Magazine
Subscrip-
tions

298 19 0 4 0 0

Software 41 0 0 0 0 0
Musical
Instru-
ments

469 1 0 11 0 0

Gift
Cards

16 1 0 0 0 0

Appliances 78 0 0 1 0 0
Luxury
Beauty

Magazine
Subscrip-
tions

Software Musical
Instru-
ments

Gift
Cards

Appliances

(b) Confusion matrix for the Image-only classifier.

FIG. 4.3: Confusion matrices for the baseline classifier models for unbalanced classification
experiment. True labels are on the Y-axis are the predicted labels are on the X-axis.
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Classifier Name Dataset Size
Accuracy (%)

Train Validation Test
Image Only

24218
66 67 67

Text Only 2 2 1
Combined 63 64 63

(a) Table of classification accuracies.

(b) Plot of classification accuracies.

FIG. 4.4: Classification accuracy of each model for unbalanced classification with normal-
ized weight balancing experiment.
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FIG. 4.5: Example image for text not extracted properly.
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Luxury
Beauty

0 0 2695 0 0 0

Magazine
Subscrip-
tions

0 0 321 0 0 0

Software 0 0 41 0 0 0
Musical
Instru-
ments

0 0 480 1 0 0

Gift
Cards

0 0 17 0 0 0

Appliances 0 0 79 0 0 0
Luxury
Beauty

Magazine
Subscrip-
tions

Software Musical
Instru-
ments

Gift
Cards

Appliances

(a) Confusion matrix for the Text-only classifier.

Luxury
Beauty

1770 183 29 614 0 99

Magazine
Subscrip-
tions

2 308 5 4 0 2

Software 2 18 9 9 0 3
Musical
Instru-
ments

38 71 22 305 0 45

Gift
Cards

4 7 1 4 0 1

Appliances 6 14 5 27 0 27
Luxury
Beauty

Magazine
Subscrip-
tions

Software Musical
Instru-
ments

Gift
Cards

Appliances

(b) Confusion matrix for the Image-only classifier.

FIG. 4.6: Confusion matrices for the baseline classifier models for unbalanced classifica-
tion with normalized weight balancing experiment. True labels are on the Y-axis are the
predicted labels are on the X-axis.
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Classifier Name Dataset Size
Accuracy (%)

Train Validation Test
Image Only

192
10 7 10

Text Only 14 11 10
Combined 12 18 7

(a) Table of classification accuracies.

(b) Plot of classification accuracies.

FIG. 4.7: Classification accuracy of each model for the 24-subset experiment.
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FIG. 4.8: Train accuracy snapshots at various epochs for the 24-subset experiment.

FIG. 4.9: Validation accuracy snapshots at various epochs for the 24-subset experiment.
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FIG. 4.10: Test accuracy snapshots at various epochs for the 24-subset experiment.
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Classifier Name Dataset Size
Accuracy (%)

Train Validation Test
Image Only

150
52 59 43

Text Only 49 64 43
Combined 54 64 48

(a) Table of classification accuracies.

(b) Plot of classification accuracies.

FIG. 4.11: Classification accuracy of each model for the 75-subset experiment.



Chapter 5

CONCLUSION AND FUTURE SCOPE

In this research we initially stated our hypothesis that when classifying images of ob-

jects, the text found on objects coupled with the image of the object itself would give a

more accurate classification of the object. These images we used were images of prod-

ucts on Amazon (Ni, Li, & McAuley 2019) and we extracted text from images using an

automated tool as well as manually by hand.

We then went on to design, execute and demonstrate experiments that were aimed

at proving this hypothesis. We used ResNet and LSTM to build a combined classifier

that would classify images using images as well as the extracted text. To understand how

the combined classifier would work in each experiment, we designed stand alone baseline

models that would work on image and text inputs respectively. The experiments were:

• Experiment 1: To show how the native models would behave on the dataset and what

other experiments, dataset changes, etc. are needed.

• Experiment 2: Introduced normalized class weights to mitigate dataset imbalance. It

showed us that class weights help but quality of extracted text was poor.

• Experiment 3: Create a sub-dataset of 24 images of each category, hand extracted

text and re-ran models. We found that dataset size is too small in proportion to the

36
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number of classes but if we have a high quality of extracted text the classification

accuracy does improve.

• Experiment 4: Used only two categories, each having 75 images with manually ex-

tracted text. This experiment proved that if we have a number of images proportional

to number of classification classes and if we have high quality extracted text the

hypothesis does hold.

For each experiment we stated how the experiment’s results affected our initial hypoth-

esis and what was the cause of each result. By the end of the experiments, we successfully

showed that our models were on their way to prove the hypothesis if expanded to a larger

dataset.

Finally, it can be concluded that the text-only classifier is much more parameter effi-

cient when compared to the image-only classifier. We say this because it is understood that

images are and always have been a huge source of features to use as inputs for classifica-

tion models but our text-only model, although on a very small scale, has shown that text

extracted from the object in the image itself is also equally if not more feature rich.

In the future, there are other experiments that can be designed and explored that might

yield different results.

• Experiments such as using an ensemble of binary or tertiary models to classify in

pairs of 2-3 classes each might yield better results.

• Future scope could even include using a deep learning based text extraction tool like

Clova AI Research’s Deep Text Recognition (Baek et al. 2019). Such tools could

help with automated high quality text extraction since it extracts text at all angles and

colors.

• This model could also be expanded to include any other real-world image set that
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contained images with text - road signs, food and beverages, apparel and fashion

among others. This could provide the much needed larger dataset as well as provide

a larger class diversity that the model might need to better generalize.
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